3.55 \(\int \frac {\cos ^2(e+f x)}{(a+a \sin (e+f x))^{3/2} (c-c \sin (e+f x))^{3/2}} \, dx\)

Optimal. Leaf size=52 \[ \frac {\cos (e+f x) \tanh ^{-1}(\sin (e+f x))}{a c f \sqrt {a \sin (e+f x)+a} \sqrt {c-c \sin (e+f x)}} \]

[Out]

arctanh(sin(f*x+e))*cos(f*x+e)/a/c/f/(a+a*sin(f*x+e))^(1/2)/(c-c*sin(f*x+e))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.34, antiderivative size = 52, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 38, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.079, Rules used = {2841, 2741, 3770} \[ \frac {\cos (e+f x) \tanh ^{-1}(\sin (e+f x))}{a c f \sqrt {a \sin (e+f x)+a} \sqrt {c-c \sin (e+f x)}} \]

Antiderivative was successfully verified.

[In]

Int[Cos[e + f*x]^2/((a + a*Sin[e + f*x])^(3/2)*(c - c*Sin[e + f*x])^(3/2)),x]

[Out]

(ArcTanh[Sin[e + f*x]]*Cos[e + f*x])/(a*c*f*Sqrt[a + a*Sin[e + f*x]]*Sqrt[c - c*Sin[e + f*x]])

Rule 2741

Int[1/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Di
st[Cos[e + f*x]/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]]), Int[1/Cos[e + f*x], x], x] /; FreeQ[{a, b
, c, d, e, f}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0]

Rule 2841

Int[cos[(e_.) + (f_.)*(x_)]^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.) + (f_.)*
(x_)])^(n_.), x_Symbol] :> Dist[1/(a^(p/2)*c^(p/2)), Int[(a + b*Sin[e + f*x])^(m + p/2)*(c + d*Sin[e + f*x])^(
n + p/2), x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IntegerQ[p
/2]

Rule 3770

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps

\begin {align*} \int \frac {\cos ^2(e+f x)}{(a+a \sin (e+f x))^{3/2} (c-c \sin (e+f x))^{3/2}} \, dx &=\frac {\int \frac {1}{\sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}} \, dx}{a c}\\ &=\frac {\cos (e+f x) \int \sec (e+f x) \, dx}{a c \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}}\\ &=\frac {\tanh ^{-1}(\sin (e+f x)) \cos (e+f x)}{a c f \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.53, size = 103, normalized size = 1.98 \[ \frac {\cos ^3(e+f x) \left (\log \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right )-\log \left (\sin \left (\frac {1}{2} (e+f x)\right )+\cos \left (\frac {1}{2} (e+f x)\right )\right )\right )}{c f (\sin (e+f x)-1) (a (\sin (e+f x)+1))^{3/2} \sqrt {c-c \sin (e+f x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[Cos[e + f*x]^2/((a + a*Sin[e + f*x])^(3/2)*(c - c*Sin[e + f*x])^(3/2)),x]

[Out]

(Cos[e + f*x]^3*(Log[Cos[(e + f*x)/2] - Sin[(e + f*x)/2]] - Log[Cos[(e + f*x)/2] + Sin[(e + f*x)/2]]))/(c*f*(-
1 + Sin[e + f*x])*(a*(1 + Sin[e + f*x]))^(3/2)*Sqrt[c - c*Sin[e + f*x]])

________________________________________________________________________________________

fricas [A]  time = 0.48, size = 160, normalized size = 3.08 \[ \left [\frac {\sqrt {a c} \log \left (-\frac {a c \cos \left (f x + e\right )^{3} - 2 \, a c \cos \left (f x + e\right ) - 2 \, \sqrt {a c} \sqrt {a \sin \left (f x + e\right ) + a} \sqrt {-c \sin \left (f x + e\right ) + c} \sin \left (f x + e\right )}{\cos \left (f x + e\right )^{3}}\right )}{2 \, a^{2} c^{2} f}, -\frac {\sqrt {-a c} \arctan \left (\frac {\sqrt {-a c} \sqrt {a \sin \left (f x + e\right ) + a} \sqrt {-c \sin \left (f x + e\right ) + c}}{a c \cos \left (f x + e\right ) \sin \left (f x + e\right )}\right )}{a^{2} c^{2} f}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(f*x+e)^2/(a+a*sin(f*x+e))^(3/2)/(c-c*sin(f*x+e))^(3/2),x, algorithm="fricas")

[Out]

[1/2*sqrt(a*c)*log(-(a*c*cos(f*x + e)^3 - 2*a*c*cos(f*x + e) - 2*sqrt(a*c)*sqrt(a*sin(f*x + e) + a)*sqrt(-c*si
n(f*x + e) + c)*sin(f*x + e))/cos(f*x + e)^3)/(a^2*c^2*f), -sqrt(-a*c)*arctan(sqrt(-a*c)*sqrt(a*sin(f*x + e) +
 a)*sqrt(-c*sin(f*x + e) + c)/(a*c*cos(f*x + e)*sin(f*x + e)))/(a^2*c^2*f)]

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\cos \left (f x + e\right )^{2}}{{\left (a \sin \left (f x + e\right ) + a\right )}^{\frac {3}{2}} {\left (-c \sin \left (f x + e\right ) + c\right )}^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(f*x+e)^2/(a+a*sin(f*x+e))^(3/2)/(c-c*sin(f*x+e))^(3/2),x, algorithm="giac")

[Out]

integrate(cos(f*x + e)^2/((a*sin(f*x + e) + a)^(3/2)*(-c*sin(f*x + e) + c)^(3/2)), x)

________________________________________________________________________________________

maple [B]  time = 0.36, size = 174, normalized size = 3.35 \[ \frac {\left (\ln \left (-\frac {-1+\cos \left (f x +e \right )+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}\right )-\ln \left (-\frac {-1+\cos \left (f x +e \right )-\sin \left (f x +e \right )}{\sin \left (f x +e \right )}\right )\right ) \left (\sin \left (f x +e \right ) \cos \left (f x +e \right )-\left (\cos ^{2}\left (f x +e \right )\right )-2 \sin \left (f x +e \right )-\cos \left (f x +e \right )+2\right ) \left (\cos ^{2}\left (f x +e \right )+\sin \left (f x +e \right ) \cos \left (f x +e \right )+\cos \left (f x +e \right )-2 \sin \left (f x +e \right )-2\right )}{2 f \left (-1+\cos \left (f x +e \right )\right ) \left (a \left (1+\sin \left (f x +e \right )\right )\right )^{\frac {3}{2}} \left (-c \left (\sin \left (f x +e \right )-1\right )\right )^{\frac {3}{2}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(f*x+e)^2/(a+a*sin(f*x+e))^(3/2)/(c-c*sin(f*x+e))^(3/2),x)

[Out]

1/2/f*(ln(-(-1+cos(f*x+e)+sin(f*x+e))/sin(f*x+e))-ln(-(-1+cos(f*x+e)-sin(f*x+e))/sin(f*x+e)))*(sin(f*x+e)*cos(
f*x+e)-cos(f*x+e)^2-2*sin(f*x+e)-cos(f*x+e)+2)*(cos(f*x+e)^2+sin(f*x+e)*cos(f*x+e)+cos(f*x+e)-2*sin(f*x+e)-2)/
(-1+cos(f*x+e))/(a*(1+sin(f*x+e)))^(3/2)/(-c*(sin(f*x+e)-1))^(3/2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\cos \left (f x + e\right )^{2}}{{\left (a \sin \left (f x + e\right ) + a\right )}^{\frac {3}{2}} {\left (-c \sin \left (f x + e\right ) + c\right )}^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(f*x+e)^2/(a+a*sin(f*x+e))^(3/2)/(c-c*sin(f*x+e))^(3/2),x, algorithm="maxima")

[Out]

integrate(cos(f*x + e)^2/((a*sin(f*x + e) + a)^(3/2)*(-c*sin(f*x + e) + c)^(3/2)), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.02 \[ \int \frac {{\cos \left (e+f\,x\right )}^2}{{\left (a+a\,\sin \left (e+f\,x\right )\right )}^{3/2}\,{\left (c-c\,\sin \left (e+f\,x\right )\right )}^{3/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(e + f*x)^2/((a + a*sin(e + f*x))^(3/2)*(c - c*sin(e + f*x))^(3/2)),x)

[Out]

int(cos(e + f*x)^2/((a + a*sin(e + f*x))^(3/2)*(c - c*sin(e + f*x))^(3/2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\cos ^{2}{\left (e + f x \right )}}{\left (a \left (\sin {\left (e + f x \right )} + 1\right )\right )^{\frac {3}{2}} \left (- c \left (\sin {\left (e + f x \right )} - 1\right )\right )^{\frac {3}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(f*x+e)**2/(a+a*sin(f*x+e))**(3/2)/(c-c*sin(f*x+e))**(3/2),x)

[Out]

Integral(cos(e + f*x)**2/((a*(sin(e + f*x) + 1))**(3/2)*(-c*(sin(e + f*x) - 1))**(3/2)), x)

________________________________________________________________________________________